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M O D E L  OF F O U R T H - O R D E R  C U M U L A N T S  F O R  D E S C R I P T I O N  

OF T U R B U L E N T  T R A N S P O R T  BY L A R G E - S C A L E  V O R T E X  S T R U C T U R E S  

B. B. Ilyushin UDC 551.511.32.532:517.4 

A model for calculation of fourth-order cumulants is presented. Based on the Schwarz 
inequalities, a dependence between the coefficients of the model is established, which allows 
one to determine their numerical values. The use of an algebraic version of the model for 
parametrization of the process of turbulent diffusion in transport equations for third-order 
correlations does not require additional empirical information and offers a correct description 
of turbulent transport by large-scale vortex structures. Millionshchikov 's hypothesis turns out to 
be insufficient for that. 

I n t r o d u c t i o n .  New directions of turbulent-flow investigations based on constructing closed equations 
of turbulent transport and their numerical implementation on computers have been intensely developed lately. 
Tile approach based on the use of a two-parametric model of turbulence gained wide application, as well as 
second-order closure models, which are effective from the computational viewpoint and yield results whose 
accuracy is sufficient for many practical applications, ttowever, the use of these models for description of 
turbulent transport in stratified flows gives a qualitatively incorrect result in some cases (see, for example, 
[1]). The anisotropic character of the buoyancy effect on the structure of turbulence is manifested in the 
long-wave range of the spectrum of turbulent oscillations [2]. This spectral range corresponds to large-scale 
vortex structures (LVS) containing the main portion of turbulence energy. According to experimental and 
theoretical studies, the following LVS are formed in stratified flows: turbulent spots in the case of stable 
stratification and coherent structures in the case of unstable stratification, which are mainly responsible for 
turbulent transport. The effects of intermittency and asymmetry of vertical turbulent transport caused by 
the influence of LVS make the probability distributions of turbulent fluctuations significantly non-Gaussian. 
The turbulence structure in these flows is usually described by third-order closure models, where the triple 
correlations (asymmetry) are calculated from differential transport equations (sec, for example, [3, 4]). A 
refinement of such models is proposed in the present paper. 

Appl icab i l i ty  of Mil l ionshchikov 's  Quas inormal i ty  Hypothes i s .  Millionshchikov's quasinorma- 
lity hypothesis for calculation of the fourth moments of statistical characteristics of turbulent flows .(velocity 
fluctuations and mixed fourth-order covariations of velocity, temperature, and concentration fluctuations) 
is often used for closure in constructing semi-empirical models of turbulent transport of the second and 
third order. According to this hypothesis, fourth-order cumulants can be ignored in comparison with the 
corresponding correlation functions. As applied to the moments of hydrodynamic fields, this hypothesis means 
that we can use the equality that expresses the fourth moments through the second moments 

c jkt = (t) 

where Cijkl is the fourth-order cumulant of velocity fluctuations. 
In some cases, the use of Eq. (1) leads to physically contradictory results [2] (for example, the 

appearance of negative portions of the spectrum of the turbulent kinetic energy [5, 6]). The latter circumstance 
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is a consequence of the fact that,  for given second and third moments, the probability distribution with the 
fourth cumulants equal to zero can be nonexistent; this circumstance is intimately connected with the fact 
that the Taylor series for the logarithm of the characteristic functional cannot be arbitrarily terminated. 

In constructing semi-empirical models of turbulence, the use of Eq. (1) allows one to unite the terms that 
describe turbulent diffusion and generation of nonlinear interaction of the fluctuations in transport equations 
for triple correlations. The resultant first-order differential equations for the third moments do not take into 
account the necessary mechanism of attenuation of triple correlations. To take it into account, Craft et al. 
[4] and Deardorff [7] supplemented the equations by diffusion terms, and Andre et al. [3] used the clipping 
approximation of the triple correlations in accordance with the generalized Schwarz inequalities. In both cases, 
the procedure of taking into account the damping of the third moments seems physically incorrect. Hazen [6] 
showed that, for the description of the initial stage of turbulence generation in viscous incompressible fluid 
flows, the area of applicability of hypothesis (1) is limited by small amplitudes of fluctuations, such that the 
third moments are small, whereas the hypothesis of equality to zero of the fifth-order cumulants (under the 
condition of nonzero fourth-order cumulants) allows a significant expansion of the area of applicability of the 
model. A similar approach is used in the present paper. It allows one to obtain algebraic models for the fourth- 
order cumulants including a damping mechanism for triple correlations (upon substitution into differential 
transport equations for triple correlations). The models obtained do not require the use of additional empirical 
coefficients. 

M o d e l  of  F o u r t h - O r d e r  C u m u l a n t s  o f  Veloc i ty  and  T e m p e r a t u r e .  Theoretical and 
experimental studies indicate the formation of large-scale convective vortices (coherent structures) under 
conditions of unstable stratification in the planetary boundary layer (PBL) [1, 8]. These structures are mainly 
responsible for turbulent transport  of momentum, heat, and substance. This transport has a countergradient 
character and cannot be physically correctly described by the existing second- and third-order closure models 
of turbulence. In particular, the models of triple correlations of the gradient type (taking into account 
the buoyancy effect among others [9, 10]) in the near-Earth layer yield a negative value of asymmetry of 
fluctuations of the vertical velocity component, which directly contradicts measurement data [11]; model 
[3], which contains differential transport equations for moments up to the third order inclusive, employs a 
physically incorrect procedure of clipping approximation. 

Velocity fluctuations of large-scale convective vortices correspond to small values of the wave vector 
k in the spectrum of the turbulent kinetic energy (TKE). The use of Millionshchikov's hypothesis in the 
description of three-dimensional turbulcnce leads to the appearance of a negative region of the TKE spectrum 
at small k [2], which can be" the reason for incorrectness of the models of turbulence in the description of 
turbulence transport by large-scale vortex structures. 

To obtain a closed model of turbulent transport that does not imply equality to zero of the fourth-order 
cumulants, the closure procedure in the present paper is performed at the level of the fifth moments, i.e., it is 
assumed that the fifth-order cumulants are equal to zero. It should be noted that,  according to Martsinkevich's 
theorem [12], the cumulant generation function cannot be a polynomial of power greater than two, i.e., either 
all the curnulants except for the first two are equal to zero (normal distribution), or there is an infinite number 
of cumulants other than zero. In the present paper, we assume that the equations for cumulants of order n - 2, 
which are obtained by termination of the Taylor series of the generation function at the nth term, take into 
account the main physical mechanisms, and the error induced by them is insignificant. Thus, to obtain the 
distribution of the third-order cumulants (correlations), the latter are calculated from differential transport 
equations; the fourth-order cumulants arc determined approximately (from algebraic expressions), and the 
fifth-order cumulants are assumed to be equal to zero, since their contribution is negligibly small. Results 
[13] of numerical simulation of vertical turbulent transport in a convective PBL verify the validity of this 
approach. 

The equations for the second- and fourth-order moments of velocity in the Boussinesq approximation 
[1] have the form 
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O(UiUjUkUl) + Urn O(UiUjUkUl) O(UiUjUkUlUrn) [ OUj 
Ot Ozrn = Ozrn - iju ~ [(uiujukurn) Ozk 

+(UiUjUk) O(ttlUrn)OXrn 1 / Op \ V<UiUjUk 02Ul ~] 
+ flgm(UiUjUkO)~rnl + p \  u iu juk  ~Xl/ -- OxrnOXrn/J' (2) 

O(u,uj) O(u~w) o(u,wuk) 
O-----i~ + Uk Oz-----~ = Ozk 

where Ui and ui are the mean and f luctuat ing components  of the instantaneous velocity, p is the pressure 
fluctuations,/3 = 1/O is the volumetric expansion coefficient, O and 0 are the mean and f luctuat ing potential 
temperature,  gm is the vector of acceleration of gravity, and p and v are the density and viscosity of the fluid. 
In (2) and (3), we use a designation of the  sum of the functions under the sign of summat ion  ~-~, which differ 

ijkl 
in a cyclic permuta t ion  of the subscripts i, j ,  k, and h ~-~F(ui,  u j , uk ,  ut, um) = F ( u i , u j , u k , u t ,  urn)+ 

ijkl 
F(ut,  ui, u j ,  uk, urn) + F(uk ,  ut, ui,  u j ,  urn) + F ( u j ,  Uk, ul, ui,  Urn). 

To express the fifth-order moments  in Eq. (2), we assume the fifth-order cumulants  to be equal to zero: 

Cijkl m =- (UiUjUkUlUm) -- (UiUj)(UkUlUrn) -- (UiUk)(UjUlltrn) -- (UiUl)(UkUjUrn) 

--(UiUrn)(UkUlUj) -- {UjUk)(UiUlUm) -- (UjUl)(UiUkU m) -- (UjUm)(UiUkUl) 

--(~kUl)(UiUjUm) -- (UkUrn)(UiUjUl) -- (UlUrn)(UiUjltk) = 0. (4) 
Jovanovic and Durst [14] demons t ra ted  the correctness of using Eq. (4) for the cumulants  C33333 and 

Ca3aal in analyzing the statistical characteristics of a turbulent  boundary layer measured on a flat plate. The 
equation for the fourth-order cumulants  (simply cumulants in what follows) Cijkt with account of (2)-(4) is 

OC,jkt OC~ju _ 
0-'---'~ -t- am OX-------m E .1--Cij  k rn --OX m --CijkO~grnt~rnl- tt i zt j lZ k ~O P / 

ijkl 

~kXk >] "1- b'[< ttittjttk Oxrn Oxrn> 

-{uiuj)(uk Ouz Ouk 
OzrnOzm> _ (uiuk)(uj Ou, OXmO3:m> --(ttittl)< uj OXmOXrn>] 

O(Ukttl) O(Ujttk?Al) -- (ttittkUm) O(UJltl) (ttj?21?Xrn) - -  (5) 
--(ttiUjttm) OXrn (uiZtrn> OXrn OXrn O X m '  

where Cijko = (uiujukO) - (uiuj)(ukO) - (uiuk)(ujO) - (ujuk)(uiO) is the mixed cumulant  of velocity and 
potential tempera ture  fluctuations. Equat ion (5) includes unknown cumulants (third and fourth terms on 
the right side of the equation). In the high-Reynolds-number approximation, the term with viscosity makes a 
negligibly small contribution and is assumed equal to zero in this paper. It follows from Eq. (5) that  the mixed 
cumulant of velocity fluctuations and the  derivative of pressure fluctuations tends to zero as the turbulence 
approaches the equilibrium state (Gaussian turbulence with zero cumulants of all orders higher than two). 
For parametrization of this cumulant ,  we use the assumption about the relaxation character of turbulence 
tendency to the equilibrium state. Then,  the cumulant  with pressure fluctuations can be represented as the 
relaxation term Ci#l /r4  [7"4 = r/C4, r = E / e  is the characteristic time scale of turbulence, E = 1/2(uiui) 
is the TKE density (per unit  mass), r is the spectral flux of the TKE (TKE dissipation rate), and 6'4 is the 
factor of proportionality between the characteristic t ime scale of turbulence and the characteristic relaxation 
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time of the cumulants]. In this case, Eq. (5) acquires the following form: 
OCijkl OCijkt out 

-- E -- Cij km Ot + Um Oxm Oxm iikt 

O(ujut) 
Ozm J Oxm 

o(,,k,~t) 
- Cijkol3gmSml -- (uiujum) Oxm 

O(uiuk) Cokt 
(w~zu~) 0 ~  C4 ~ (6) 

An algebraic expression for the cumulant Cijkt is obtained from (6) in the steady case without account of the 
convective term: 

Cijkl = --~4 .. Cijkm Ox----'m q- CijkOflgm~rnl q- (uiujum) O(UkUl)oxm 

O(ujukut)] O(um) O(uiuk) ) 
+(u,um) + (u~UkUm) ~ + ( u S ~ ' ~ U m ) ~ ~ .  (7) 

Ozm J Ozm OZm 
In calculation of the evolution of the moments up to the third order inclusive, the use of 

parameterization (7) [the steady case of Eq. (6)] for the cumulant Cijkt implies a faster relaxation of the latter 
as compared to the third moments. This condition imposes a constraint on the coefficient C4:C4 > C3, where 
C3 is the proportionality factor between the characteristic time scale of turbulence and the characteristic 
relaxation time of triple correlations (the coefficient of the correlation model with pressure fluctuations in 
equations for the third moments). To find C4, we consider the Schwarz inequality for the triple correlation 

(u3) 2 4 (u~)(u~)- (~)~- >/0. (s) 
in [3], condition (8) for the correlation (w 3) [using (1) for parametrization of the fourth-order moment 

(w4)] was satisfied by clipping of the triple correlation (w3). In the present paper, we determine the upper 
boundary of the numerical value of the coefficient C4 from the condition of satisfied inequality (8). We write 
a stricter inequality 

C iiii • 3 2 2 (ui) /{ui) , (9) 

and consider the process of relaxation attenuation of homogeneous turbulence in accordance with the laws 

(w 2) = (w2)oexp(--t /r) ,  (w 3) ---= (w3)oexp(-C3t/r) ,  Ciiii = Ciiiioexp(-C4t/'r). (10) 

With account of (10), we obtain the following condition from (9): 6"4 <~ 2C3 - 1. To use correctly Eq. (7) for 
the cumulant Cijkt [the steady case of Eq. (6)], we assume the numerical value of the coefficient C4 to be 
equal to the upper boundary, of the resultant condition: 6'4 = 2Ca - 1. 

The algebraic model of the cumulant of velocity fluctuations (8) for a stratified flow includes mixed 
cumulants of velocity and potential temperature fluctuations. Using similar considerations, we can construct 
the following algebraic models for them: 

_ 7" Cijmo -t- -}- Cijoo~gm~km + (uiujUm) O(UkO) CijkO = C4o .. ~Xm Cijkrn ~Xm OXrn 

o(,,j~,ko)] o(,~ujuk) } +(uiOum) O(ujuk) + (uium) + <Oum) " (11) 
Ox------Z ~z~ J Oxm ' 

Cijo0 = C4o7" .. Cimo0 ~Xm + 2CijmO ~Xm q- Cio~ q- (OUm) a(uiujO)oxm 

+2(u,Oum) O(,,jO) O(,,jO~)] O('.W) O(~ l., 
ox-~ + (u~u') ~ J + (~ Ox----T-+ (~',uj~'m) ~ m  j" (~) 

r [ OUi O0 
- - ~  Craoee + 3CimOO "Jr Cooeo[3gmSim -1- 3(02Um) O(UiO) Ciooo= C4o L ~z~ ~ Ozm 

+3(UiumO) 0(02) O(ui02) 0(03)] 
+ 3<Oum> Ox--T- + <u~> 0-2jj; (13) 
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Since the mechanism of relaxation attenuation in (11)-(13) is caused by correlations with pressure fluctuations, 
and in Eq. (14) (as in equations for the correlations (02) and (03}) it is caused by molecular heat transfer, the 
relaxation coefficients C4e and Co for Eqs. (11)-(13) and (14) are not assumed to be equal. 

Stricter Schwarz inequalities for the cumulants Ciioo and Ceoeo have the form 

Cii88 >1 (lz2) , 60008 >1 (03)2/(82). (15) 

From inequalities (15), in considering the process of heat propagation in the field of decaying turbulence, 
we find the equations for the relaxation coefficients C4o = 2C3eo - 1 and Co = 2C38 - r, where C3oe and 
C3o are the coefficients of the characteristic time scales of relaxation of the triple correlations (u~O) and (03), 
respectively, and r = r/TO is the ratio of the time scales of velocity and temperature fluctuations (to = (62)/~0, 
where r is the destruction of turbulent fluctuations of the temperature). 

In modeling the evolution of a convectivc PBL, Ilyushin and Kurbatskii [13] used model (7), (11) with 
ignored buoyancy effects for parametrization of the processes of turbulent diffusion in transport equations 
for the triple correlations (w. 3) and (w20). The calculated profiles of the vertical TKE flux (wE') and the 
correlation (w3), which are positive over the entire PBL height, are in good agreement with the measurement 
data. Nevertheless, the lack of distributions of the fourth-order moments measured in the PBL does not allow 
us to evaluate the adequacy of the proposed model for (7) and (11)-(14) cumulants. 

Raupach [15] measured the distributions of dispersion Crw (a 2 = (w2)), asymmetry Sw = (w3)/(w2) 3/2, 
and kurtosis Kw = (w4)/(w2) 2 of the vertical velocity in the boundary layer on a rough flat plate. However, 
since there are no data on the vertical distribution of the characteristic time scale of turbulence r (or spectral 
TKE flux) in [15], it is not possible to verify the adequacy of the proposed model for cumulants by immediate 
substitution of the measured quantities into Eq. (8). Nevertheless, taking into account that the behavior of 
the third-order moment (w 3) for the flow mentioned is described by an algebraic model of the gradient type 
obtained from an appropriate differential transport equation in the local balance approximation [16] 

(w 3) = 

the value of the cumulant can be found from the following algebraic expression obtained from (7): 

c3/a f< b 2 1 
C3333 -- 2 C 3 -  1 [ <w 2) -'l'-4<w 3> ~ 1 .  (16) 

Here C3 = 4 [16]. 
Figure 2 shows the kurtosis profile Kw calculated by substituting into (16) analytical functions, which 
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describe the distributions of dispersion aw and asymmetry Sw of vertical fluctuations of the velocity w (curves 
in Fig. 1) measured in [15] (d is the height of displacement of the fluid by roughness elements and 5 is the 
boundary-layer thickness). The points in Figs. 1 and 2 indicate measurement data [15]. It is seen from Fig. 2 
that algebraic model (7) for the cumulant C3333 correctly describes its behavior in a flat-plate boundary layer. 

The results presented and the results [13] allow us to conclude that the algebraic model for cumulants 
can be used in boundary layers both to parametrize the processes of turbulent diffusion in transport equations 
for the third-order moments and to calculate the cumulants themselves. 
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